Restriction Enzymes AatII

A restriction enzyme or restriction endonuclease is defined as a protein that recognizes a specific, short nucleotide sequence and cuts the DNA only at or near that site, known as restriction site or target sequence. The four most common types of restriction enzymes inclue: Type I (cleaves at sites remote from a recognition site), Type II (cleaves within or at short specific distances from a recognition site), Type III (cleave at sites a short distance from a recognition site), and Type IV (targets modified DNA- methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA). The most common challenges with restriction digest include- 1. inactivation of enzyme, 2. incomplete or no digestion, and 3. unexpected cleavage. The enzyme should always be stored at -20C and multiple freeze-thaw cycles should be avoided in order to maintain optimal activity. Always use a control DNA digestion with the enzyme to ensure adequate activity (to avoid interference due to high glycerol in the enzyme). For complete digestion, make sure that the enzyme volume is 1/10th of the total reaction volume, optimal temperature is constantly maintained throughout the reaction, the total reaction time is appropriately calculated based on the amount of DNA to be digested, appropriate buffers should be used to ensure maximal enzymatic activity, and in case of a double digest, make sure that the two restriction sites are far enough so that the activity of one enzyme cannot interfere with activity of the other. Star activity (or off-target cleavage) and incomplete cleavage are potential challenges which may occur due to suboptimal enzymatic conditions or inappropriate enzyme storage. To avoid these, follow the recommended guidelines for storage and reactions, and always check for the efficacy of digestion along with purification of digested products on an agarose gel.

Start discussion

No discussions found

Start your discussion

Share your thoughts or question with experts in your field

Start a discussion

Found 3 matching solutions for this experiment

AatII NEB#R0117

New England BioLabs

Protocol tips
Following isolation from E. coli strain Top10 using a Plasmid Midi Kit (Qiagen, Valencia, CA) according to manufacturer protocols, plasmid pXG-10 [54] was digested with AatII and NheI restriction endonucleases (New England BioLabs, Ipswich, MA) to remove the PLtetO-1 promoter and lacZ fragment. A DNA fragment containing the shuA start codon and 390 upstream nucleotides was amplified from the chromosome of wild-type S. dysenteriae by polymerase chain reaction using primers which contain AatII and NheI endonuclease recognition sites respectively. The amplified product was purified using a QIAQuick gel extraction kit (Qiagen) and then digested with AatII and NheI endonucleases and cloned into the digested pXG-10 plasmid backbone to create pshuA-gfp. The nucleic acid sequence of pshuA-gfp was verified by nucleic acid sequencing of both DNA strands.
AatII (10 U/µL)

Thermo Fisher Scientific

Protocol tips
To create a crippled CMV promoter, the majority of the enhancer region was deleted from EGFP-N1 (Clontech, Takara) using the restriction enzyme AatII (Thermo Fisher) to generate the plasmid delCMV-EGFP-N1 described in Watanabe and Mitchison (77).
Protocol tips
The kanamycin resistance cassette of pTKP2031V was deleted by digestion with XhoI and AatII (Takara Bio).
Can't find the product you've used to perform this experiment? It would be great if you can help us by Adding a product!

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms