ChIP acH3 Canine Donkey

- Found 887 results

Get tips on using ShRNA CD24 Lentiviral Transduction Particles (CD24-V2LHS_71908) to perform shRNA gene silencing Mouse - Prostate cancer cell lines (DU145 and PC3) CD24 lentiviral particles

Products Dharmacon (GE Life Sciences) ShRNA CD24 Lentiviral Transduction Particles (CD24-V2LHS_71908)

Get tips on using heat shock protein family A (Hsp70) member 5 to perform siRNA / miRNA gene silencing Human - PC3 (human prostate cancer cell line) HSPA5 (GRP78)

Products Thermo Fisher Scientific heat shock protein family A (Hsp70) member 5

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - MCF-7 human breast cancer cells

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

Get tips on using LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells to perform Live / Dead assay mammalian cells - MDA-MB-231 human breast cancer cells

Products Thermo Fisher Scientific LIVE/DEAD™ Viability/Cytotoxicity Kit, for mammalian cells

Get tips on using DMEM/F12 - Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 to perform Stem cell culture media Ovarian cancer stem cells (Caov3, 3AO, SKOV3)

Products Biological Industries DMEM/F12 - Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12

Get tips on using SNP Type™ 96.96 Genotyping Reagent Kit with Control Line Fluid—10 IFCs to perform Cell line authentication Human prostatic cancer cell line DU145

Products Fluidigm SNP Type™ 96.96 Genotyping Reagent Kit with Control Line Fluid—10 IFCs

Get tips on using SNP Type™ 96.96 Genotyping Reagent Kit with Control Line Fluid—10 IFCs to perform Cell line authentication Human prostatic cancer cell line PC3

Products Fluidigm SNP Type™ 96.96 Genotyping Reagent Kit with Control Line Fluid—10 IFCs

Get tips on using Galacto-Star™ β-Galactosidase Reporter Gene Assay System for Mammalian Cells to perform Reporter gene assay β-galactosidase substrates - MCF-7 human breast cancer

Products Thermo Fisher Scientific Galacto-Star™ β-Galactosidase Reporter Gene Assay System for Mammalian Cells

Get tips on using Corning® 500 mL SF Medium, [+] L-glutamine and 1 g/L BSA to perform Stem cell culture media Ovarian cancer stem cells (Caov3, 3AO, SKOV3)

Products Corning Corning® 500 mL SF Medium, [+] L-glutamine and 1 g/L BSA

Protein expression refers to the techniques in which a protein of interest is synthesized, modified or regulated in cells. The blueprints for proteins are stored in DNA which is then transcribed to produce messenger RNA (mRNA). mRNA is then translated into protein. In prokaryotes, this process of mRNA translation occurs simultaneously with mRNA transcription. In eukaryotes, these two processes occur at separate times and in separate cellular regions (transcription in nucleus and translation in the cytoplasm). Recombinant protein expression utilizes cellular machinery to generate proteins, instead of chemical synthesis of proteins as it is very complex. Proteins produced from such DNA templates are called recombinant proteins and DNA templates are simple to construct. Recombinant protein expression involves transfecting cells with a DNA vector that contains the template. The cultured cells can then transcribe and translate the desired protein. The cells can be lysed to extract the expressed protein for subsequent purification. Both prokaryotic and eukaryotic protein expression systems are widely used. The selection of the system depends on the type of protein, the requirements for functional activity and the desired yield. These expression systems include mammalian, insect, yeast, bacterial, algal and cell-free. Each of these has pros and cons. Mammalian expression systems can be used for transient or stable expression, with ultra high-yield protein expression. However, high yields are only possible in suspension cultures and more demanding culture conditions. Insect cultures are the same as mammalian, except that they can be used as both static and suspension cultures. These cultures also have demanding culture conditions and may also be time-consuming. Yeast cultures can produce eukaryotic proteins and are scalable, with minimum culture requirements. Yeast cultures may require growth culture optimization. Bacterial cultures are simple, scalable and low cost, but these may require protein-specific optimization and are not suitable for all mammalian proteins. Algal cultures are optimized for robust selection and expression, but these are less developed than other host platforms. Cell-free systems are open, free of any unnatural compounds, fast and simple. This system is, however, not optimal for scaling up.

Proteins Protein Expression Prokaryotic cells E. coli rabbit voltage-dependent calcium channel β2a subunit

Outsource your experiment

Fill out your contact details and receive price quotes in your Inbox

  Outsource experiment
Become shareholder Discussions About us Contact Privacy Terms